A Numerical Multistage Fractured Horizontal Well Model Concerning Hilly-Terrain Well Trajectory in Shale Reservoirs with Natural Fractures

نویسندگان

چکیده

Multistage hydraulic fracturing is one of the most prevalent approaches for shale reservoir development. Due to complexity constructing environments experiments, numerical simulation a vital method study flow behavior under conditions. In this paper, we propose model that considers multistage fractured horizontal well with hilly-terrain trajectory in presence natural fractures. The was constructed based on MATLAB Reservoir Simulation Toolbox and used Embedded Discrete Fractured Model (EDFM) describe interrelationship between matrix, fractures, wellbore. then applied an actual condensate gas producing from reservoir, effects parameters data were studied case. results highly consistent production data, which validates accuracy proves its potential predicting future trends. We extended discussion two examples extreme trajectories by reviewing inflow contribution each fracture respect pressure, changes static pressure time. conclusion, proposed capable providing close reality thus guiding field design operation drilling process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Model for Vertical Wells with Multi-stage Horizontal Hydraulic Fractures in Water Flooded Multilayer Reservoirs

For the characteristics of horizontal fractures in shallow low-permeability oil layers after hydraulic fracturing in multilayer reservoirs, horizontal fractures are taken equivalent to an elliptical cylinder with the reservoir thickness using the equivalent permeability model; then, upon the elliptic seepage theory, the seepage field which has led by a vertical well with horizontal fractures is...

متن کامل

Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Da...

متن کامل

Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction...

متن کامل

CO2 Storage Capacity for Multi-Well Pads Scheme in Depleted Shale Gas Reservoirs

As a promising technology to improve shale gas (SG) recovery and CO2 storage capacity, the multi-well pads (MWPs) scheme has gained more and more attention. The semi-analytical pressure-buildup method has been used to estimate CO2 storage capacity. It focuses on single multi-fractured horizontal wells (SMFHWs) and does not consider multi-well pressure interference (MWPI) induced by the MWPs sch...

متن کامل

performance model for vertical wells with multi-stage horizontal hydraulic fractures in water flooded multilayer reservoirs

for the characteristics of horizontal fractures in shallow low-permeability oil layers after hydraulic fracturing in multilayer reservoirs, horizontal fractures are taken equivalent to an elliptical cylinder with the reservoir thickness using the equivalent permeability model; then, upon the elliptic seepage theory, the seepage field which has led by a vertical well with horizontal fractures is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15051854